

边坡落石灾害及其防治

报告人:赵世春

西南交通大学

Collapse and falling stone are frequent geological hazards.

四国の落石発生源の多くは崖部(1)

国道11号鳴門市北灘 1990年10月

国道317号芸予地震による落石2001年

落石対策便覧(μ=0.35)

$$E = mgH\left(1 - \frac{\mu}{\tan\theta}\right)(1 + \beta)$$

=1.0×9.8×27×
$$\left(1-\frac{0.35}{\tan 36}\right)$$
×1.1=151kJ

防護柵の可能吸収エネルギー50kJ<151kJ

- ●落石の速度,エネルギーを過大評価?
- ●等価摩擦係数0.35は適切?

Faling Rock Protection

rockfall shelters or reinforced concrete retaining walls

rockfall shelter

Rockfall shelters are usually concrete structures covered on the roof by an absorbing material such as soil backfill used as a shock absorbing cushion.

Impact Test of Falling Rocks on The Rockfall Shelters

ロックキーパー 実物実証実験(ダイジェスト)

日本サミコン株式会社

Taroko Gorge of Taiwan

Safety and Preparation

Rockfall Shelters of Taroko Gorge

An Effective Way to Intercept Falling Rocks—Net Barrier

Aircraft Carrier

The Deformation Process of Net Barrier

Fringe Levels
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00
0.000e+00

Numerical simulation

Y 20

The Deformation Process of Net Barrier

The working mechanism of net barrier --reducing the impact of fall rock on the net by constant deforming, absorbing and dispelling impact energy with braking rings.

Field Rockfall Test Site

Vertical test site

Field Rockfall Test Site

Inclined test site

The advantages of field rockfall test:

- 1. site conditions (such as slopes and cliffs)
- 2. lower construction cost.

The disadvantages of field rockfall test:

- 1. the test site often locates in exurban or mountainous areas and is not easy to arrive.
- 2. the equipment maintenance and management would be difficult.
- 3. the ground condition limits the design and construction of test facilities and it's difficult to achieve the ideal condition.

for vertical test

Debris Flow Barriers

Debris flow event Aobandani, Japan 1998

Debris flow event Seewalchen, Austria 2000

Snow Slide Event Hayato, Japan 2001

Wire-Rope Rockfall Protective Fence

ポケット式RCネット工法 【岩塊が落下した場合】

- ●岩塊が斜面から剥離し落下すると想定します。
- ●落下しRCネットに衝突した岩塊は、端緩衝金具とワイヤロープとの摩擦により落石エネルギーを吸収されます。
- ●更にRCネットと地山に挟まれながら下端部まで導かれます。

ポケットキャッチ式RCネット工法 「岩塊が落下した場合」

- ●岩塊が斜面から剥離し落下すると想定します。
- ●落下しRCネットに衝突した岩塊は、端緩衝金具とワイヤロープとの摩擦により落石エネルギーを吸収されます。
- ●更にRCネットと地山に挟まれながら下端部まで導かれます。崩壊した岩塊の撤去も可能です。

3-1(公)道路工事(防災)

発注者

岡山県備中県民局 高梁支局

横断図例

型 式/ポケット式 岩 塊 重 量/64.3kN 落石エネルギー/2,530kJ 面 積/1,811㎡

主要地方道佐渡一周線離島地域連携(県道防災)工事

発注者 | 発

新潟県佐渡地域 振興局

型 式/ポケットキャッチ式 岩 塊 重 量/48.0kN 落石エネルギー/1,795kJ 面 積/360㎡

THANKS

